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Patterns of behavior exhibited by mice in their home cages reflect
the function and interaction of numerous behavioral and physio-
logical systems. Detailed assessment of these patterns thus has the
potential to provide a powerful tool for understanding basic
aspects of behavioral regulation and their perturbation by disease
processes. However, the capacity to identify and examine these
patterns in terms of their discrete levels of organization across
diverse behaviors has been difficult to achieve and automate. Here,
we describe an automated approach for the quantitative charac-
terization of fundamental behavioral elements and their patterns
in the freely behaving mouse. We demonstrate the utility of this
approach by identifying unique features of home cage behavioral
structure and changes in distinct levels of behavioral organization
in mice with single gene mutations altering energy balance. The
robust, automated, reproducible quantification of mouse home cage
behavioral structure detailed here should have wide applicability for
the study of mammalian physiology, behavior, and disease.

circadian � ingestion � obesity � phenotyping

Molecular genetic approaches for manipulating gene expres-
sion and neural activity in mice, combined with the

elucidation of the mouse genome, provide unprecedented op-
portunities for the investigation of diverse behavioral processes
in the context of a mammalian system. While substantial insights
have been gained through the application of existing behavioral
assays, many of these examine behavior over a limited time
window and focus on a single behavioral domain (1, 2). To
complement such approaches, we developed an automated,
readily-standardized quantitative approach for elucidating the
complex organization of diverse behaviors exhibited by mice in
their home cages.

We focused on mice in their home cages because the organization
of behavior in freely acting animals provides a window into the
central integration of numerous behavioral and physiological sys-
tems (e.g., energy balance, thermal status, osmotic/volume status,
sleep, reproduction, defense, and environmental entrainment). The
functions and interactions of these systems result in the coordinated
organization of multiple behaviors (3–5). Although several sophis-
ticated approaches for automated behavioral data collection and
home cage monitoring exist, they do not employ algorithms that
quantitatively capture the rich temporal and spatial structure of
diverse behaviors that occur over multiple time scales (1, 6–19).

As a first step in examining this structure, we made use of the
observation that in natural environments animals typically alternate
between two major discrete states, active and inactive (20–22).
During active states (ASs), animals engage in behaviors such as
foraging and patrolling within a regularly traversed home range.
During inactive states (ISs), animals return to a refuge (nest,
burrow, or home base) and engage in behaviors such as rest and
sleep (23–26). These two states are thus distinct in terms of their
spatial properties, emitted behaviors, energetic costs, and risks of
predation (22, 27). Because transitions between these states are

critical to the fitness of animals, we predicted that state (AS/IS)
regulation would shape home cage behavior.

The capacity to identify ASs and ISs also provided a foundation
for evaluating behavioral patterns over shorter time scales. Within
ASs, episodes of feeding and drinking appear to be clustered into
discrete bouts. However, robust automated quantification of such
bouts has been difficult to achieve (28–32). We addressed this by
developing an approach for intake bout identification that inte-
grates both temporal and spatial information. In addition, we
developed a supervised learning algorithm that identifies bouts of
home cage locomotion. We anticipated that the simultaneous
quantification of multiple levels of behavioral organization encom-
passing multiple behaviors would provide unique insights into
behavioral regulatory mechanisms and the influences of genetic
mutations.

To examine the utility of this approach, we investigated the
impact of 2 single gene mutations with distinct effects on energy
balance regulation. We examined ob/ob (OB) mice that lack the
adipocyte hormone leptin and display marked early onset obesity,
diminished physical activity, and an early life hyperphagia that
declines with age (33, 34). We also examined mice bearing a
targeted null mutation of the htr2c gene encoding the serotonin
5-HT2C receptor (2C mice) that exhibit hyperactivity, increased
food intake, and the development of obesity by 6 months of age (35,
36). The comprehensive nature and sensitivity of this approach
provide insights into the organization of behavior in mice and reveal
unique genetic influences on behavioral organization even in these
extensively studied mutant mouse lines. The reproducibility and
robustness of this approach can be examined by viewing the
structure of home cage behavioral patterns for all animals used in
this study at http://mousehouse.ucsf.edu.

Results
Classification of Active and Inactive States. To develop a method for
identifying ASs and ISs, we first assessed the spatial features of
home cage behavior and uncovered a robust spatial structure
revealed by position probability density estimates. These density
estimates exhibited single prominent peaks corresponding to the
observed nest location with additional smaller peaks at the feeder,
water spout, and occasionally at other locations (Fig. 1A). This
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robust spatial structure (see http://mousehouse.ucsf.edu) allowed
us to classify ISs by identifying spatially clustered positions where an
animal exhibited the longest visit times (Fig. 1B, details in Materials
and Methods). As expected, the location at which the IS positions
clustered (home base) typically corresponded to the observed nest
location [2 � 1 cm (mean � SD) from nest center to home base
center; Fig. 1B, see SI Methods]. However, a few mice exhibited a
distinct home base despite the absence of a readily observed nest,
demonstrating that our IS classification does not require nest
building. To assess the temporal structure of behavior, IS onset and
offset times were extracted by grouping sequential IS positions (Fig.
1C). Finally, ASs, which could include feeding, drinking, and/or
locomotion, were identified as the temporal intervals between ISs
(Fig. 1C).

Intake Bout Classification. Having characterized behavioral struc-
ture at the level of ASs/ISs, we examined behavioral organization
within ASs. To quantify the apparent clustering of ingestive events
during individual ASs (Fig. 2 A and B), we developed an auto-
mated algorithm for grouping feeding or drinking events into bouts.
Our algorithm incorporates assessment of both spatial and tempo-
ral properties of ingestion. It segregates intervals between ingestive
events [inter-event intervals (IEIs)] into distinct populations: those
occurring within bouts [within-bout intervals (WBIs)] and those
occurring between bouts [inter-bout intervals (IBIs)] (see details in
Materials and Methods). The use of spatial information enabled the
detection of short IBIs during which an animal leaves an intake
device. These would have been misclassified as WBIs (26% of IBIs)

using approaches relying solely on temporal data (28, 29, 31, 32).
More importantly, spatial information was essential for robustly
automating this segregation, overcoming known problems aris-
ing from inter-individual variability in temporal properties of
IEIs (28, 31, 37). Having separated IEIs into WBIs and IBIs,
intake bout onsets and offsets were identified by grouping
sequential WBIs (Fig. 2B).

Movement Bout Classification. Movement around the cage within
ASs exhibited a characteristic pattern in which rapid movement
between locations alternated with pauses and small movements in
local areas (Fig. 2 B and D). To quantitatively characterize such
patterns, we developed a supervised learning algorithm that used
the speeds and turning angles of movements occurring during ISs
and intake bouts as a template for nonlocomotor movement (see SI
Methods). This allowed us to classify movement events as either
locomotor or nonlocomotor events. Uninterrupted strings of loco-
motor events were then used to define the onset and offset times of
locomotion bouts (Fig. 2 B and D). Finally, behaviors occurring
during ASs that were not classified as intake or locomotion bouts
were classified as ‘‘other’’ behavior (Fig. 2 B and D).

Behavioral Structure at Multiple Time Scales. The application of our
classification methods to the behavioral record enables assessment
of behavioral organization over a wide range of time scales. An
example is shown in Fig. 2, where a single light cycle AS for a
C57BL/6J mouse is selected and plotted on an expanded time scale
(Fig. 2 A and B). Bars above feeding and drinking events indicate

Fig. 1. State classification. (A) Position probability density for a single WT mouse during 1 day. (Back Left) Maximum position probability peak at nest. (Front)
Smaller peaks at feeder (Left) and lick spout (Right). (B) Inactive-state location (home base) revealed by clustering of inactive-state positions (black) at observed
nest (small gray box). Forest green, active-state positions; orange, feeding events; blue, drinking events. Dashed black lines, cage floor; solid black lines, cage
lip; small box at Front Left, feeder; circle at Front Right, water bottle. (C) Position variation and intake events for a single day. Position as the distance from lick
spout (LS) on y axis with inactive states in black and active states in forest green. Feeding (orange) and drinking (blue) event rasters shown below position data.
Dashed lines, dark cycle onset and offset.

Fig. 2. Bout classification. (A) Position
variation and intake events for single
WT mouse with IS positions (black), AS
positions (forest green), feeding events
(orange), and drinking events (blue).
(B) Single light cycle AS indicated by
gray box in B. Neon green, locomotion
bout positions; red, ‘‘other’’ positions.
Bars above feeding and drinking events
indicate bout onset and offset. (C) In-
take events during feeding (Upper) and
drinking (Lower) bouts from left and
right gray boxes in B. (D) Position dura-
tions (Left) and path taken (Right) for
AS shown in B.
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intake bouts identified by our methods (Fig. 2B). These bouts may
also be examined at a higher temporal resolution allowing obser-
vation of individual feeding and drinking events (Fig. 2C). Loco-
motion bouts revealed by our methods (green) exhibit episodes of
rapid movement between locations, while ‘‘other’’ behaviors (red)
are characterized by movements with low speeds and high turning
angles and occur most frequently at the feeder, lickometer and nest
(Fig. 2 B and D). Our automated classification approach thus
allowed us to extract the structure of behavioral patterns occurring
over multiple time scales (i.e., the day, within a day, within a state,
within a bout).

Time Budgets. We then determined daily time budgets, which
describe the proportions of time allocated to various behaviors (20,

21, 38, 39). OB mice exhibited a striking increase in time spent in the
IS along with marked reductions in time spent engaged in loco-
motion and ‘‘other’’ behavior (Fig. 3 A and Table S1). In addition,
the percentage of the AS devoted to feeding and drinking doubled
in OB mice (feeding: OB 41 � 2%, WT 19 � 1%, P � 1.7 � 10�7;
drinking OB 4.3 � 0.2%, WT 1.9 � 0.1%, P � 6.7 � 10�8). This
alteration of within-AS behavior compensated for the global re-
duction in AS time such that the total time engaged in ingestion did
not differ between WT and OB mice (Table S1). In contrast, OB
mice decreased time spent in locomotion (Fig. 3A) and decreased
locomotion bout speeds (Table S1) resulting in a striking decrease
in movement (17% of WT levels). Unlike OB mice, 2C mice
decreased IS time while increasing time engaged in ‘‘other’’ behav-
ior (Fig. 3A and Table S1). In addition, 2C mice exhibited increased

Fig. 3. Daily patterns. (A) Daily time budgets. Black, inactive state; orange, feeding; blue, drinking; neon green, locomotion; red, ‘‘other.’’ (B) Position variation
and intake events over 1 day for WT (Left), OB (Center), and 2C (Right) mice. AS positions (forest green lines). (C) Feeding (orange), drinking (blue), and locomotion
(neon green) events and ASs (forest green lines above the events) over 8 days (y axis) for mice in B. (D) AS onsets (x axis) and log durations (y axis) for days and
mice in C (circles) and 64 randomly selected mouse days from each group (dots). Shown are ASs with feeding and drinking (purple), feeding-alone (orange),
drinking-alone (blue), and no intake (green). (E) IS onsets and log durations for days and mice in C (black circles) and 64 randomly selected mouse days for each
group (gray dots).
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daily movement and food intake along with increased locomotion
and feeding bout intensity (see Table S1).

State Patterns. We next examined daily variation in state durations
and transitions and the probability of being in the AS (AS proba-
bility) (Figs. 3–5). In WT mice, AS probability exhibited clear peaks
at dark cycle (DC) onset and offset accompanied by a discrete class
of long ASs (1–2 h) that regularly occurred at these times (onset/
offset ASs; Figs. 3 B–D; 4 A, C, and E; and 5 A, C, and E). In
contrast, IS duration exhibited nadirs at DC onset and offset with
broad IS peaks occurring in the middle of the light cycle (LC) and
DC (Figs. 3E, 4D, and 5D). Transition rates between states also
revealed 2 peaks that preceded the occurrence of the onset/offset
ASs (Figs. 4B and 5B).

In addition, we identified 4 AS intake types: no intake, feeding-
alone, drinking-alone, and feeding-drinking (Fig. 3D and Table S2).
The relative proportions of these AS intake types varied with AS
duration such that ASs containing both feeding and drinking
dominated ASs with long durations (�10 min), including the
onset/offset ASs (Fig. 3D and Fig. S1). In contrast, short ASs (� 1
min) commonly contained only feeding, only drinking, or no intake,
while the majority of medium duration ASs (1–10 min) were of the
feeding-alone type (Fig. 3D and Fig. S1).

The physiological significance of these AS designations is high-
lighted by the distinct genetic influences on patterns formed by the
variation in AS duration with AS onset time (Figs. 3D, 4E, and 5E).
To quantitatively characterize these complex patterns without
arbitrarily reducing their rich behavioral features, we developed an
algorithm (comparison clustering) that determines whether two
patterns are significantly different and identifies aspects of these
patterns that contribute most to such differences (details in Mate-
rials and Methods). Comparison clustering revealed that OB mice
exhibited a statistically significant loss of their onset/offset ASs and
most of their medium and short duration ASs (Fig. 4E). These
changes were accompanied by an increase in the proportion of
feeding-drinking ASs (see Table S2). In contrast, during the 6 h
preceding the DC, 2C mice exhibited a significant and specific
increase in their medium and short duration ASs, which contained
a high proportion of feeding-alone ASs (Fig. 5E and Table S2). The
marked sensitivity of AS patterns to genetic alterations highlights
the potential of quantitative AS pattern assessment to provide
insights into the regulation of behavioral organization in freely
acting animals.

Determinants of Circadian Variation. Across all groups of mice, we
observed intake and movement peaks occurring at DC onset and
offset (Fig. 6A and Fig. S2A) corresponding to the commonly
exhibited crepuscular circadian pattern [peaks at dusk and dawn
(40)]. Although AS probability exhibited a similar pattern (Fig. 4A,
5A), daily variation in bout size and AS bout rate did not (Fig. 6 B
and C and Fig. S2 B and C). This led us to hypothesize that the daily
patterns of intake and movement could be better accounted for by
variation in the determinants of AS probability than by changes in
behaviors occurring within ASs. We used multiple linear regression
(41) to determine the extent to which daily patterns of intake and
movement were attributable to the predictor variables: AS proba-
bility, AS bout rate, and bout size. AS probability accounted for the
majority of the daily variation in feeding, drinking and movement
across all groups (Table S3 and S4) consistent with our hypothesis
that variation in the determinants of AS probability plays a major
role in shaping circadian patterns.

Compensatory Processes Preserve Daily Patterns of Intake in OB Mice.
Although OB mice exhibited crepuscular intake patterns similar to
WT mice (highest intake at DC onset and offset) (Fig. 6A and Fig.
S2A), these patterns were achieved in a markedly different manner.
OB mice exhibited large decreases in AS onset rates (Fig. 4B)
accompanied by large compensatory increases in food and water

Fig. 4. State patterns for WT and OB. (A–D) Effects of genotype (G), time (T),
and interaction (GxT) were tested using 2 � 11 RM ANOVA with g (G), t (T), and
x (GxT) displayed on each plot for significant effects (4 tests, � � 0.0125). If
significant interaction is present, an asterisk indicates significant difference
(� � 0.05) by posthoc t test. Daily variation in 2 h bins for WT (open squares)
and OB (filled circles): (A) AS Probability (G P � 1.7 � 10�10, GxT P � 2.0 � 10�29)
(B) AS Onset Rate (G P � 2.5 � 10�6, GxT P � 1.4 � 10�6) (C) AS Duration (G P �
0.96, GxT P � 2.8 � 10�8) (D) IS Duration (G P � 5.7 � 10�8, GxT P � 1.0 � 10�5)
(E) Comparison clustering for AS patterns (��2 � 703, P � 1.6 � 10�4). AS onset
time (x axis). AS log duration (y axis). Magenta indicates regions where WT
contributed significantly more ASs than OB. Gray indicates regions where signif-
icant differences between groups were not detected. Significantly different
regions account for 91.2% of total ��2. Black bar, dark cycle.
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intake during their ASs (Fig. S3). (Food: OB, 361 � 20 mg; WT,
148 � 14 mg. Water: OB, 310 � 15 mg; WT, 126 � 8 mg.) In
addition to these striking changes in AS intake, OB mice displayed
large increases in intake during bouts (Fig. 6C and Fig. S2C). (Food:
OB, 222 � 74 mg; WT, 38 � 8 mg. Water: OB, 114 � 32 mg; WT,
61 � 6 mg.) These findings indicate that processes regulating state
and bout intake can be dissociated from those producing the
commonly observed crepuscular intake pattern.

Selective State Alterations Increase Feeding in 2C Mice. In contrast to
OB mice, 2C mice altered their food intake selectively through
changes in AS/IS patterns. Moreover, their increased food intake
was restricted to the LC (Fig. 6A) when AS onset rate and AS
probability were increased (Fig. 5 A and B). During this time neither
food consumed per AS (Fig. S4B), feeding AS bout rate (Fig. 6B),
nor feeding bout size (Fig. 6C) were altered. Thus, the increased AS
probability accounted for their increased food intake. In fact,
comparison clustering revealed that preceding DC onset, 2C mice
selectively increased short and medium duration ASs (Fig. 5E)
likely accounting for their increase in feeding-alone ASs (Table S2).

Within-Active-State Structure. The simultaneous classification of
ASs and bouts allowed us to investigate behavioral regulation
within the AS. To examine organization on this shorter time
scale, we aligned AS onsets and determined how the probability
of engaging in particular behaviors varied with the time from
AS onset. This revealed a clear sequential structure (Fig. 7). The
probability of feeding was highest early in the AS then as the
feeding probability declined the probabilities of engaging in
drinking, locomotion, and ‘‘other’’ behavior increased. Interest-
ingly, OB mice maintained a strikingly high probability of feeding
longer than WT mice consistent with a high priority for feeding
in OB mice (Fig. 7).

Discussion
This quantitative characterization of behavioral organization in
freely acting mice provides a powerful approach for assessing the
impact of genetic and other experimental manipulations on
whole animal physiology and behavior. We developed an algo-
rithm allowing automated identification of a major feature of
behavioral organization: the clustering of multiple behaviors into
ASs alternating with ISs that occur at discrete home base locations.
The demonstration that ASs and ISs occur in caged inbred mice
emphasizes the fundamental importance of these states and pro-
vides a framework for studying behavioral organization.

Having captured the structure of behavior at the level of ASs and
ISs, we examined the organization of behaviors within ASs. We
developed an approach for intake bout identification using spatial
and temporal information to improve the accuracy and robustness
of classification. We also developed a supervised learning algorithm
to identify bouts of locomotion alternating with pauses and small
movements in local areas. Similar patterns of intermittent locomo-
tion have been observed in rodents exploring novel laboratory
environments (42) and are also common in natural environments
(43). Despite the prevalence of such movement patterns, proce-
dures for capturing their basic features had not previously been
developed for home cage behavioral assessment (1, 6–13, 16–18).

These new techniques provide a unique opportunity to examine
basic properties of behavioral regulation in freely acting mice. For
example, within ASs the probability of feeding is highest near AS
onset, raising the possibility that processes regulating food acqui-
sition may be a primary determinant of AS initiation. In addition,
a subsequent decline in feeding probability was accompanied by
increases in the probabilities of engaging in drinking, locomotion,
and ‘‘other’’ behavior. This pattern of within-AS behavior is rem-
iniscent of the satiety sequence: a sequence of behaviors observed
in animals provided access to food after food deprivation (44, 45).
The detection of such sequences using an automated system

Fig. 5. State patterns for WT and 2C. Daily variation in 2 h bins for WT (open
squares) and 2C (filled circles). (A) AS probability (G P � 8.9 � 10�5, GxT P �
1.2 � 10�9). (B) AS onset rate (G P � 0.002, GxT P � 4.4 � 10�13). (C) AS Duration
(G P � 0.5, GxT P � 1.2 � 10�6). (D) IS duration (G P � 5.0 � 10�8, GxT P � 6.7 �
10�15). (E) Comparison clustering for AS patterns (��2 � 233, P � 0.001). Cyan
indicates regions where WT contributed significantly fewer ASs than 2C.
Significantly different regions account for 48.3% of total ��2.
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provides new opportunities for understanding the regulation of
ingestion in ad libitum fed animals.

We also observed previously uncharacterized and distinct fea-
tures of circadian patterns in C57BL/6J mice, such as the presence
of the onset/offset ASs and distinct AS intake types. Our approach
thus provides the first opportunity to gain insights into the regu-
latory processes producing these striking features of AS/IS prop-
erties. The importance of understanding these regulatory processes
is highlighted by our observation that circadian patterns of feeding
and movement are shaped predominantly at the level of AS/IS
properties rather than bout properties.

Furthermore, the preservation of crepuscular intake patterns in
OB mice despite profound alterations in state properties indicates
that the regulatory processes producing crepuscular intake patterns
and those governing AS/IS regulation are dissociable. More gen-
erally, these findings indicate that genetic influences may dramat-
ically alter some aspects of behavioral organization (e.g., bouts and
states), while compensatory changes may preserve other aspects of
behavioral organization (e.g., crepuscular patterns). This has im-
plications for behavioral phenotyping, illustrating that dramatic
changes in behavior may be missed if only a particular aspect of
behavior (e.g., hourly food intake) is characterized.

With regard to OB mice, studies exploring the impact of the Lepob

mutation on energy balance will benefit from consideration of the
global reorganization of behavioral patterns we observed. Feeding,
drinking and locomotor activity patterns were markedly altered at
multiple levels of organization. In addition, circadian variation in
AS patterns was vastly altered in OB mice as highlighted by the loss
of their onset/offset ASs. The loss of these states may reflect a
suppression of nonessential behaviors and their accompanying
locomotion, consistent with the possibility that signals favoring
energy conservation contribute substantially to the global reorga-
nization of behavioral patterns in OB mice (33). It is therefore
notable that animals respond to increased costs of food acquisition
by reducing the number and increasing the size of feeding clusters
(46, 47).

The notion that energy conservation shapes behavioral patterns
in OB mice may also be considered in light of the phenomenon
known as nonexercise activity thermogenesis (NEAT) (38). In
humans, NEAT refers to all physical activity except purposeful

exercise. It has been proposed that NEAT levels are innately
determined, subject to biological regulation, and highly correlated
with obesity susceptibility (38). In this context, the capacity to
quantify the time and intensity of distinct behaviors may help
elucidate mechanisms contributing to obesity. It is therefore in-
triguing that the Lepob and htr2c� mutations produce opposing
effects on IS time, locomotion and ‘‘other’’ behavior. It is possible
that elevations of NEAT in hyperphagic 2C mice might facilitate
their maintenance of normal body weights as young adults, whereas
reductions of NEAT may exacerbate adiposity in OB mice at this
time of life.

The utility of this approach for phenotypic assessment is further
highlighted by the selective manner in which the htr2c� mutation
increases the frequency of feeding-only ASs at a particular time of
day. This occurs during what is typically an inactive phase (light
cycle) for these nocturnal animals, and is reminiscent of the clinical
condition termed night eating syndrome (NES). NES is found in up
to 27% of severely obese persons and is characterized by multiple
nocturnal awakenings accompanied by food ingestion (48). The
relevance of the 2C feeding pattern to NES is further suggested by
the responsiveness of NES to serotonin reuptake blockade (48).

This behavioral assessment approach may also be widely applied
to facilitate the development and utility of rodent models of disease.
For many common diseases, perturbations of daily patterns of
multiple behaviors (i.e., ‘‘lifestyle’’) are associated with disease
susceptibility, progression, and treatment outcome (6, 8, 9, 38, 39).
The ability to quantitatively assess the organization of multiple
home cage behaviors will be useful for the study of disease processes
and drug development relevant to metabolic, affective, addictive,
pain, neurodegenerative and other disorders (8–10, 39, 49). Fur-
thermore, since adverse effects of compounds at both central and
peripheral sites may impact behavioral regulation (11), this tech-
nology can also be applied for toxicological screening.

Although the potential value of this system for evaluating a
number of behaviors relevant to disease pathophysiology and
treatment is clear, future development will more thoroughly delin-
eate the capabilities of the system and expand its utility. For
example, it will be of interest to determine the sensitivity of
behavioral patterns to genetic background (e.g., inbred strain
survey). In addition, the algorithms developed can be used to assess

Fig. 6. Feeding and locomotion bout property variation with time of day (2 h bins; 3 tests, � � 0.0167). (A) (Left) WTOB chow intake (G P � 0.1, GxT P � 3.9 �
10�8). (Center) WTOB movement (G P � 2.8 � 10�8, GxT P � 1.6 � 10�36). (Right) WT2C chow intake (G P � 0.01, GxT P � 4.9 � 10�9). (B) (Left) WTOB feeding
bouts per AS hour (G P � 4.4 � 10�5, GxT P � 0.2). (Center) WTOB locomotion bouts per AS hour (G P � 1.8 � 10�6, GxT P � 3.3 � 10�13). (Right) WT2C feeding
bouts per AS hour (G P � 0.3, GxT P � 0.002). (C) (Left) WTOB feeding bout size (G P � 1.4 � 10�5, GxT P � 0.03). (Center) WTOB locomotion bout size (G P �
0.0167, GxT P � 0.06). (Right) WT2C feeding bout size (G P � 0.4, GxT P � 0.02).
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a broader range of behavioral domains by modifying the home cage
environment (e.g., running wheels, operant response devices, novel
objects, auditory and olfactory stimuli). Video analysis can also be
used with this system to enable delineation of behaviors currently
grouped into the category ‘‘other.’’ Multiple-animal video tracking
could also address the current requirement that animals be indi-
vidually housed allowing comparison of behavioral patterns in
singly- and group-housed animals.

Because the processes of data collection, processing, quality
control, and analysis are automated and reproducible, our approach

allows substantial scaling, providing the opportunity to develop a
large searchable home cage behavioral database. Such a database
could be populated by patterns (‘‘behavioral signatures’’) associated
with inbred strains, genetic manipulations, pharmacological treat-
ments, CNS lesions, diet, stressors, disease models, etc. The utility
of such comparisons has been enhanced by the development of
novel procedures, such as comparison clustering, that enable de-
tailed assessment of the manner in which complex behavioral
patterns differ. Our approach for quantifying the organization of
mouse home cage behavior should thus provide new opportunities
to examine the neural basis of behavioral regulation, comprehen-
sively study disease models, and assess new therapies. Moreover, the
availablity of gps and mobile monitoring technologies such as
actimetry (50–53) will enable adaptation of our algorithms for
behavioral classification and analysis to the monitoring of humans
and animals in the field.

Materials and Methods
Animals. Mutant male mice (Lepob/Lepob, OB) and control C57BL/6J mice (WT)
were obtained from The Jackson Laboratory. Male mice hemizygous for the
X-linked htr2c� allele (congenic on a C57BL/6J background) and control WT litter
mates were bred at UCSF and genotyped as described in ref. 34. Animals were
housed under LC/DC 12-hr with free access to water and a chow diet (PicoLab;
mouse diet 20). Experiments were performed in accordance with the guidelines
of the University of California San Francisco Committee on Animal Research.

Data Collection. We collected data from 11- to 14-week-old male mice: WT (from
the OB colony; n � 8) and OB (n � 8); WT (from the 2C colony; n � 16) and 2C (n �
16). Because the behavior of WT mice could be influenced by phenotypic effects
onmaternalcareandcagematebehavior, comparisonsweremadebetweeneach
line of mutant mice and WT animals derived from the same colony. Mice were
individually housed for 14 days in home cage monitoring systems containing
paper bedding and nestlets. Validation studies were performed to verify that
feeder photobeam break time and lick numbers were reliable indicators of food
and fluid consumption, respectively (see SI Methods). The last 10 days of data
were used for analysis allowing 4 days for acclimation. The large volumes of
behavioral data required methods for maximizing data quality. Algorithms de-
veloped in-house used the output of each data collection device to cross-check
the performance of other devices in each cage (see SI Methods).

Inactive State Classification. Animals exhibited visits to a location in the cage
(home base) that had properties distinct from visits to other locations: Move-
ments there were small and interspersed with the longest observed periods of
immobility.Weusedthisobservationtoquantify theoccurrenceof ISsbyderiving
a pause duration threshold that depended on two parameters (time window and
spatial filter) determined by minimizing a state classification error (see SI Meth-
ods). The time window accounted for occasional relocation of the home base
while the spatial filter smoothed out small movements to define positions and
pause durations based on the failure of the animal to move beyond a threshold
(WTOB, 2 cm; WT2C, 3 cm). The use of the time window and spatial filter allowed
us to examine the relationship between time spent at each position (pause
duration) and the distance of each position from the position with the longest
pause duration in the position’s time window (Fig. S5). Positions were binned
with respect to their log pause durations (bin width 0.1 log ms, empty bins
excluded), and a pause duration threshold was then established by fitting 3 lines
to bin duration and maximum distance in each bin using non-linear least squares
regression (Fig. S5). The intersection of the second and third lines was set as the
pausedurationthresholdto identify spatially clusteredpositionswithpauses that
were longer than at any other location.

Bout Classification. Our classification of feeding or drinking bouts (described
below with regard to feeding) incorporates assessment of both spatial and
temporal properties of ingestion. Spatial information was incorporated to im-
plement the concept that the termination of a feeding bout can be identified by
the presence of a distinct behavior, such as locomotion from the food source,
occurring between two feeding events (29, 54). We therefore examined the
location of the mouse during the interval between the end of each feeding
event and the onset of the subsequent feeding event (IEI). This allowed us
to split IEIs into 2 groups (at-feeder or not) and estimate the probability
that the mouse remained at the feeder during each IEI (see SI Methods).

The termination of a feeding bout can also be identified by the occurrence of
a long IEI between two feeding events. Standard approaches for the identifica-
tion of feeding bouts have typically used such a criterion by categorizing two

Fig. 7. Within active state structure. (A and B) Onsets and offsets of feeding
(orange), drinking (blue), and locomotion (green) events occurring during 50
randomly selected light cycle ASs from WT (A) and OB (B) mice. Each (C–F) line
displays a single AS (y axis). Time during ASs (x axis) with time 0 at AS onset.
Variation in probability during ASs for WT (open squares) and OB (filled circles)
mice in 1 minute bins for (4 tests, � � 0.0125); (C) Feeding (G P � 4.6 � 10�6,
GxT P � 6.2 � 10�42). (D) Drinking (G P � 0.6, T P � 0.005, GxT P � 0.0002). (E)
Locomotion (G P � 0.2, GxT P � 4.2 � 10�13). (F) Other (G P � 9.9 � 10�6, GxT
P � 7.9 � 10�34).
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distinct types of IEI durations: short WBIs and longer IBIs (31, 32). To derive such
a criterion, we used both temporal and spatial information to split the IEIs into 2
groups (short and long) and estimate the probability that an IEI was short (see SI
Methods). We then combined the spatial and temporal information to designate
each IEI as either a WBI or an IBI by averaging the probability that the mouse
remained at the feeder with the probability that the IEI was short (Fig. S6 and S7).
To classify locomotion bouts, we developed a supervised learning algorithm that
utilized our prior classification of inactive states and intake bouts (Fig. S8;
seeSIMethods).Ourautomatedclassificationof ISsandboutswere inaccordwith
manually-scored visual observation data (see SI Methods).

Comparison Clustering. We tested the null hypothesis that a control and test
grouphadthesamepatternofASonsettimesanddurationsby(i) combiningdata
for all mouse days in the 2 groups, (ii) assigning each AS in the combined data to
oneofanumberof clusters, and (iii) calculatinga �2 statistic foreachclusterbased
on our null hypothesis that both groups contributed equal proportions of ASs to
each cluster (Fig. S9; see SI Methods). The sum of the chi-squares over all clusters
was used as the measure of overall difference between the two groups. The
significance of any difference was determined by permuting the mice between
the 2 groups and recalculating the sum of chi-squares. If a significant difference
between groups was present, regions that contributed significantly (P � � 0.05)
were found by obtaining a P value for each cluster adjusted for multiple com-
parisons, SR3 (55).

General Statistics. Comparisons between groups were made for multiple vari-
ablesusing t testsorrepeatedmeasures (RM)ANOVA.Foragivenlevelofanalysis,
a Bonferroni correction for multiple comparisons was used. For instance, in
comparing the daily amount of food, water, and movement a correction was
made for 3 tests. All values reported are mean � SE unless otherwise noted.
Significance of time in all RM ANOVA, P � 0.001 unless otherwise noted.
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